
Page 1 of 23

Exploit Development Tutorial

A tutorial to explain and show the development of a buffer

overflow attack in a Windows based system.

Thomas MacKinnon

CMP320: Ethical Hacking 3

BSc Ethical Hacking Year 3

2019/20

Page 2 of 23

Contents

Introduction .. 3

Procedure .. 5

Developing a Proof of Concept ... 5

Creating a Reverse Shell .. 12

Egg-Hunter Shellcode Proof of Concept ... 14

ROP Chains .. 16

Discussion.. 21

Countermeasures .. 21

Avoiding Intrusion Detection Systems .. 21

References .. 22

Page 3 of 23

INTRODUCTION
A buffer overflow vulnerability is caused when user entered data overruns the fixed

length of memory allocated to their input, leading to overwriting adjacent pieces of data

used by the application. This is usually caused by the developer of the application

presuming that the user will not input abnormally large files which result in the program

crashing (Veracode). However, this assumption leaves many applications being

vulnerable, leaving their users at risk from a myriad of attacks that could cause serious

damage to their devices.

Exploiting buffer overflows is a very old practice in computing, dating all the way back to

the Morris worm of the 1980s, but still is a prevalent issue today. Developers have taken

steps into preventing this common flaw, through patches to Operating systems and

limiting user input, but many are still left vulnerable.

This tutorial aims to give a detailed understanding of buffer overflow vulnerabilities,

through building of a Proof of Concept to malicious exploitation of the flaw. The

application being exploited is CoolPlayer, an audio player designed for Windows

(SourceForge, 2019). CoolPlayer allows the user to upload custom skin files to change the

appearance of the application. However, there is no input validation associated with this

function, leaving it vulnerable to buffer overflow attacks.

Figure 1: CoolPlayer by Source Forge

All the testing and development of the buffer overflow attacks was done on a Windows

XP Service Pack 3 Virtual Machine, which contained all the tools used throughout. The

coding language Perl is also utilized throughout the majority of the tutorial in order to

create the needed skin files for CoolPlayer. No coding experience is needed for Perl, as

each script is shown with screenshots and explained, and a link to each tool is provided

in the references of this document.

Page 4 of 23

The stack operates as a collection of items, that are worked through with last in first out approach

for items. In our case jobs get added to the top of the stack with a push operation, and are removed

with a pop operation.

The heap contains all the memory allocated towards the program, and can be increased with a

malloc() or calloc() function. Memory leaks can occur if allocated memory not being used isn’t

deallocated, so the free() function is very useful in avoiding that issue (Gribblelab, 2012).

The BSS (block started by symbol) contains uninitialized values and is initialized to arithmetic 0

before the program begins. Global and static variables that are initialized by the program are

stored in the data segment, which is a read-only area. (Geeks for geeks, 2020).

Figure 2: Diagram of Program Memory (Medium, 2018)

Page 5 of 23

PROCEDURE

DEVELOPING A PROOF OF CONCEPT

First stage of this tutorial is the creation of a Proof of Concept, which will reveal whether the

application is vulnerable to a buffer overflow attack. This is simply done by creating a file for the

program with too much information within, to test if the buffer overflows or not. CoolPlayer allows

users to upload custom skin files to customize their application through an .ini file, so to test for

vulnerabilities an incorrect .ini file will be created.

Figure 3: Crash Test 1 Perl Script

The Perl script in Figure 3 will create a .ini file containing the needed header followed by the

letter “a” a thousand times. To test for a buffer overflow vulnerability, follow the steps provided

below.

1. Copy the Perl script in Figure 3 to notepad++ and save it as a Perl file type (.pl) into a

folder.

2. Double click the Perl file inside the folder to run it, this will quickly create a .ini file

named “crashTest1.ini”. To check the script has worked open the .ini file in notepad++.

3. Run CoolPlayer, right click on the application and click Options. The custom skin option

is found at the bottom, simply open this and upload the .ini file and click OK.

4. If a buffer is overflowed the program will crash, resulting in an error message seen in

Figure 4. If the program did not crash it might that not enough information was input, so

the buffer did not overflow. To get the program to crash simply increase the amount a’s

in line 3 of Figure 3 by 500 or more and repeat steps 2 to 4.

Figure 4: A Successful Crash

Page 6 of 23

No crashes occurred after inputting one thousand A’s, so this was increased to one thousand five

hundred, which in turn resulted in a crash. This means that the buffer overflowed somewhere

between 1000 -1500 characters.

Further Investigation with OllyDbg

OllyDbg (Ollydbg, 2014) will be used throughout the majority of this tutorial, so it’s

important to familiarize yourself with its features before using it. The software takes

applications and dissembles it into assembly code, offering the user a step by step

approach to seeing how a program runs. This comes particularly useful when finding

specific information about buffer overflow vulnerabilities, such as the minimum amount

of characters needed to crash the application.

OllyDbg can be quite intimidating for a first-time user, so here are each of the primary

windows explained to help. CoolPlayer has been attached already, so that the windows

actually contain information.

1. Code Window - This shows the code of the application, showing each instruction

with its related address being at the far left.

2. Registers Window - This window shows the register used by the application, and

what information they contain. Importantly this window shows the EIP and ESP

for the application, which will be critical in developing the buffer overflow exploit.

3. Data Window - This window shows Hex and ASCII data for each address, giving

the user a more readable form of the information.

4. Stack Window - The stack is shown through this window, allowing the user to see

the jobs being worked through whilst the application operates.

Figure 5: CoolPlayer attached to OllyDbg

1 2

3 4

Page 7 of 23

OllyDbg will now be used to investigate the application further, by following the steps

bellow information.

1. Attach CoolPlayer to OllyDbg by click Attach inside OllyDbg’s file menu and select

CoolPlayer from the available options (CoolPlayer must be open).

2. Now select Run from the Debug menu, and then use CoolPlayer to select the .ini

file that will crash the application.

3. Return to OllDbg to view the results.

Figure 6: OllyDbg's Register Window after a crash

The Registers section of OllyDbg reveals that the EIP (Extend Instruction Pointer) has

been overwritten with A’s, as seen on the right side of Figure 6. The left side shows the

stack, with the top of the stack being overwritten with A’s.

As the custom skin setting is a function of the overall application it must return to the

main function of the program. This is done using a JMP EIP, which will return the

application to the EIP, however since the EIP has been overwritten the application

instead tries to JMP 41414141. This is an illegal memory location, which causes the

application to crash, but if the EIP was instead overwritten to a memory location that

contained our shellcode new exploits would be possible.

Finding the Distance to the EIP

The exact distance to the EIP must be found to make it point to our shellcode, this can be

done using a predictable pattern. The section of the pattern that overwrites the EIP will

reveal the exact location, allowing the further development of this Proof of Concept.

A Metasploit tool named pattern_create.rb can be used to create a pattern, to operate

this tool right click on the Shortcut to cmd folder on the XP SP3 desktop and select

CmdHere. Copy the text into command prompt, making a pattern of 1500, as seen in

Figure 7.

Figure 7: Creating a pattern of 1500 characters

Page 8 of 23

Now that the pattern is created it is time to make a script around it, copy the old script

and replace line 3 with the pattern, as seen in Figure8.

Figure 8: Inserting the Pattern into the Perl Script

Use the Perl script to create the .ini file and launch CoolPlayer attached to OllyDbg. Then

run the CoolPlayer and select the new .ini file containing the pattern. OllyDbg Registers

section will now show the EIP to be 6A423969 which can be used to find the distance to

the section of the pattern that the program reached before the buffer overflowed.

Figure 9: Registers Window showing the section of Pattern

Open CmdHere for the Shortcut to cmd and type the command seen in Figure 10. This

reveals the number of characters needed to overwrite the EIP of the application, being

1048, now that a specific distance has been found, the shellcode can be placed.

Figure 10: Finding the Pattern Crash point

Page 9 of 23

Placing the Shellcode

The shellcode for most buffer overflow attacks is placed at the top of the stack, however

we must first check if there is enough space. To do this the predictable pattern will be

used again, except this it will be placed at the top of the stack to measure the amount of

available space. A simple script, shown in Figure 11, is used to check for available space,

by first inputting 1048 A’s, then inputting four characters (in this case it is the character

B) to overwrite the EIP and then followed by the predictable pattern. The pattern in this

case will 800 characters, as this enough for the necessary shellcode, and plenty more

extra space.

Figure 11: Script for checking the available space at the top of the stack

After creating the .ini file, add it as a custom skin file in CoolPlayer attached to OllyDbg to

examine the crash. The result shows there is plenty of space at the top of the stack,

meaning our shellcode can easily fit.

Figure 12: OllyDbg stack window

Page 10 of 23

Jumping to ESP

The ESP (Extended stack pointer) points to the top of the stack, which is where the

shellcode is going to be placed. The location of the ESP is not always the same, as

additional items could always be placed on the stack. This rules out the option of

changing the EIP to the location of the ESP, since it won’t reliably jump to the top of the

stack. So instead the EIP will be changed to the location of a JMP ESP, which will always

jump to the top of the stack.

CoolPlayer (and any other application) loads specific DLL files which contain fixed JMP

ESP that can be used in this proof of concept. To find was DLL files CoolPlayer uses,

simply attach CoolPlayer to OllyDbg and select Executable modules within the View

menu. Figure 13 shows each DLL used, for this buffer overflow exploit we will use

kernel32.dll.

Figure 13: OllyDbg Executable Module menu

Now the location of the JMP ESP must be found within kernel32.dll, a tool named findjmp will be

used to do this. Open up command prompt by selecting CmdHere from the Shortcut to cmd file,

and type the following command seen in Figure 14. A JMP ESP was found at 0x7C86467B inside

kernel32, which will be used to reliably jump to the top of the stack.

Figure 14: finding a JMP ESP in kernel 32

Addresses are not always usable, as any containing a null byte will lead to the data in the

buffer becoming unusable. A null byte can be spotted by two zeros right next to each

other, an example of a null byte address would be 0700 A123, however an address of

0730 0123 is fine.

Page 11 of 23

The Final Proof of Concept

Now that we have the specific distance to the EIP and have a JMP ESP to get to the top

of the stack the final script can be written. As this is a Proof of Concept rather than an

actual malicious exploit, we will use a piece of shellcode to open up the calculator

application. This shows that there is potential for further exploiting in the future, as the

calculator shellcode can easily be swapped out.

The system being used is a Windows XP SP3, so the shellcode needs to work with this

operating system. The shellcode bellow was found through quick google search (Exploit

Database, 2010), and is designed to open the calculator for this operating system.

"\x31\xC9"."\x51"."\x68\x63\x61\x6C\x63"."\x54"."\xB8\xC7\x93\xC2\x77"."\xFF\xD0"

Figure 15: Proof of Concept script

Figure 15 shows the final script for this Proof of Concept, it creates the needed header for

the .ini file followed by 1048 A’s in order to overflow the buffer. It will then replace the EIP

with the location of the JMP ESP within kernel32 which will in turn jump to the top of the

stack. Ten NOP’s (no operation) are then used to stop any system calls from overwriting

our shellcode at the top of the stack. Finally, the shellcode is written, opening a calculator

window.

Run the Perl file to create the Proof of Concept .ini file, then select it as the custom skin

file inside CoolPlayer. If the buffer overflow exploit is successful, a calculator should appear,

as seen in Figure 16. This successfully shows that CoolPlayer is vulnerable to buffer

overflow attacks and could be used to create a reverse shell with a more malicious

shellcode.

Figure 16: Calculator opening from the Perl script

Page 12 of 23

CREATING A REVERSE SHELL

Now that CoolPlayer can be exploited with a buffer overflow attack it is time to make a

reverse shell instead of just running a calculator. The Metasploit GUI will be used for this,

open MSFGUI from the Desktop and select shell_reverse_tcp from the windows section

of the Payloads menu.

Figure 17: Setting up the reverse shell

A variety of options will appear on the screen, copy the inputs seen in Figure 18 to create

the shellcode. Once all the settings are in place, click Generate to create the text file

inside the chosen directory.

Figure 18: Reverse shell settings

Page 13 of 23

Now with the reverse TCP shellcode a proper exploit can be done on CoolPlayer, simply

replace the shellcode for the calculator with the new shellcode. Figure 19 shows the

shellcode in the Perl script, and the full script can be found in Appendix eeeeeee.

Figure 19: Perl script with new shellcode

However, this Perl script is not enough on its own, it needs a listener to connect to the

reverse shell after it has run. Using Netstat create a simple listener on port 4444 using

the command nc -l -p 4444. Then run CoolPlayer with the new Perl script and the listener

should activate giving a reverse shell into the target PC.

Figure 20: Reverse shell created after the skin file is selected

Page 14 of 23

EGG-HUNTER SHELLCODE PROOF OF CONCEPT

Sometimes there is not always enough space at the ESP for shellcode, which stops most buffer overflow

exploits from working. A work around has been found though, by implementing the shellcode amongst the

series of A’s. Another method involves custom crafting the stack to have the shellcode above the ESP, and

then leaving a tag to the start of the shellcode.

A custom Egg-hunter shellcode needs to be created for this to work; Mona.py inside Immunity debugger

will be used to do this. Mona.py can be download from the link below and should be placed in the

PyCommands folder within Immunity Debugger, the full directory path can be seen in Figure 21.

https://github.com/corelan/mona

Figure 21: Mona.py in the Immunity debugger folder

Run Immunity Debugger and type command seen in Figure 22, this will create a text file containing the

shellcode in C:\Program Files\Immunity Inc\Immunity Debugger directory.

Figure 22: Immunity Debuger creating the shellcode

Opening the files shows the shellcode and the tag needed, in this case it is w00tw00t.

https://github.com/corelan/mona

Page 15 of 23

Figure 23: Egghunter script

Copy the Perl script seen in Figure 23 to create the Egg-Hunter .ini file, this script simulates the lack of

space in the stack that would require an Egg-Hunter work around. This is done by adding two hundred NOP

operations at line 10. The other piece of shellcode seen is the calculator from the Proof of Concept, simply

to show that the Egg-Hunter method works. After loading the .ini file into CoolPlayer the calculator should

open, although this will take some time as it is scanning through the memory to find the shellcode.

Figure 24: Egghunter .ini file opening up the calculator

Page 16 of 23

ROP CHAINS

Buffer overflow attacks are not always possible in newer versions of Operating Systems, as

countermeasures have been put into place to prevent exploitation. DEP setting was been available

since Windows XP, and prevents the stack from executing any code, preventing the exploits

conducted throughout this tutorial. The operating system for the Virtual Machines is Windows XP

Service Pack 3, and so contains a DEP setting that gives different levels of protection depending on

user preference. To turn DEP on, right click My Computer and select Properties, followed by

Advanced, Performance Settings, Data Execution Protection. Figure 25 shows the menu, select

the options seen in the screenshot, making sure that CoolPlayer isn’t added as an exception. After

this is completed, restart the Virtual Machine.

Figure 25: Enabling DEP

To check that DEP is actually working boot up CoolPlayer and enter any .ini file used before, such

as the calculator and attempt to load it as the skin file. An error message similar to Figure 26

should show up, meaning that DEP is working.

Figure 26: DEP preventing the buffer overflow exploit

Page 17 of 23

There is a way to bypass DEP, through the creation of a ROP chain that will disable DEP through

multiple system calls. RETN addresses will be key in this exploit, as it allows movement through

memory and the stack. To find these RETN addresses, boot up Immunity Debugger and attach

CoolPlayer to it, in the same way that you would attach CoolPlayer to OllyDbg. Mona.py will be

used again, using the command seen in Figure 27 will create a text file showing usable RETN

addresses.

Figure 27: Mona.py finding RETN addresses

The test file created will be named find.txt, and can be found at C:\Program Files\Immunity

Inc\Immunity Debugger. The file will contain many addresses, not all usable, so search for an

address without any NULL Bytes and that is not as READONLY. Figure

Figure 28: RETN address selected

Figure 28 shows the address selected, being 0x77c127fe, which will replace the JMP ESP found in

the old calculator Perl script. Copy the script seen in Figure 29, replacing line 4 with your own

chosen address.

Figure 29: Testing the Return address

Page 18 of 23

This is not enough to check that the script is actually working, so open OllyDbg and attach

CoolPlayer. We need to add a breakpoint at the RETN address so that we know for certain it is

jumping to that location. Do this by pressing CTRL G on the Code window and enter the desired

address, now right click it and select Breakpoint, then Memory, on access. This should turn the

address black, now run CoolPlayer and load the .ini file into it. OllyDbg should display the RETN

address now, with red text colour, showing that it is successfully jumping.

Figure 30: Break point at the RETN address

Now in a similar manner a ROP chain must be found, this will be done in Immunity Debugger again

with CoolPlayer attached. Type the command seen in Figure 31, which will create a text file named

rop_chains.txt which can be found in the same location as the find.txt.

Figure 31: Mona.py finding ROP chain

The file is rather large, containing many ROP chains sorted by mona.py select a chain from the

section that contains the VirtualAlloc() function (around line 580), as it will be used to disable DEP.

Perl is not an option here, so the ROP chain will first be converted to Perl so it can implemented in

the script. Copy the selected ROP chain into a text document, as seen in Figure 32.

Figure 32: ROP chain

Page 19 of 23

 Notepad++ offers a useful replacing tool, which can be used to convert the python ROP chain into

a Perl compatible code. Open the ROP text file and replace all instances of:

0x with $rop = $rop.pack(‘V’,0x

, with);

Formatting to work with Perl will take some time. Implement the ROP chain within the old ROP

chain test, as seen in Figure 33, and add the calculator shellcode too.

After running the created .ini in CoolPlayer, the desired effect of opening the calculator did not

happen, and instead the error message from Figure 26 shows, meaning the ROP chain did not

work. OllyDbg was then used to see if the stack revealed any information to give a cause for

the .ini file failing.

Figure 33: Final ROP chain script

Page 20 of 23

Figure 34: Stack from ROP chain .ini file

A break point was placed at 0x77c29d61, which is the first RETN in the ROP chain, so the stack

could be thoroughly examined. From the stack it is clear that addresses beginning with 2c have

been changed to 20, therefore CoolPlayer is filtering characters making ROP chains near

impossible.

Page 21 of 23

DISCUSSION

COUNTERMEASURES

Buffer Overflow attacks can result in major damage to your system, the reverse shell conducted

earlier in the tutorial had the potential to be a serious risk to an unsuspecting user. However,

buffer overflows can be stopped by these countermeasures.

• DEP – As shown in the latter half of the tutorial, Data Execution Prevention (DEP) helped

greatly in preventing buffer overflow attacks. It does this by making the stack non-

executable, preventing the shellcode from running. This stopped every malicious file

created throughout this tutorial, showing its true strength as a countermeasure.

• Canaries – Canaries are random values placed after each buffer on the stack, which check

to see if the original values have been modified by the user input. If the values have

changed, the program can shut down before any malicious shellcode is run (Synopsys,

2017).

• ASLR – ASLR causes memory locations to change after each boot, meaning that JMP ESP

would no longer work, as the location inside Kernel32 would have changed.

AVOIDING INTRUSION DETECTION SYSTEMS

Intrusion Detection Systems aim to prevent many exploits, including buffer overflow attacks, by

monitoring for malicious activity and preventing acts that violate its policies. There are ways to

bypass this system though, by using a polymorphic shellcode, by encoding the shellcode and

placing the decoder in front of it. The shellcode will be automatically decoded once the application

reaches it, allowing for exploits to get past an Intrusion Detection System.

The Intrusion Detection System is also vulnerable to Denial of Service attacks, so by sending too

much data you can overwhelm the system. This vulnerability might not allow for shellcode

execution, as much of the free space on the stack will be taken up with the Denial of Service data.

The Intrusion Detection System can also be deceived, by misusing error messages the system can

begin to attack itself and other applications rather than the exploit. A fragmental approach can

also lead to bypassing the system, by sending the shellcode in smaller chunks so that the Intrusion

Detection System does not notice it.

Page 22 of 23

REFERENCES
Veracode (2020). WHAT IS A BUFFER OVERFLOW? LEARN ABOUT BUFFER OVERRUN

VULNERABILIBTIES, EXPLOITS & ATTACKS. Available at:

https://www.veracode.com/security/buffer-overflow (Accessed on 02/05/2020)

Source Forge (2019). CoolPlayer. Available at:

http://coolplayer.sourceforge.net/ (Accessed on 02/05/2020)

Exploit Database (2010). Windows/x86 (XP SP3) (English) – calc.exe Shellcode (16 bytes). Available at:

https://www.exploit-db.com/exploits/43773 (Accessed on 02/05/2020)

MIT (2003). Red Hat Enterprise Linux 3: Using as, the Gnu Assembler. Chapter 5. Sections and Relocations.

5.5 bss Section. Available at:

Whole manual: http://web.mit.edu/rhel-doc/3/pdf/rhel-as-en.pdf

Specific chapter: http://web.mit.edu/rhel-doc/3/rhel-as-en-3/bss.html

(Accessed on 03/05/2020)

Gribblelabs (2012). Memory: Stack vs Heap. Available at:

https://gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html (Accessed on 03/05/2020)

GeeksforGeeks (2020). Memory Layout of C Programs. Available at:

https://www.geeksforgeeks.org/memory-layout-of-c-program/ (Accessed on 03/05/2020)

Medium (2018). How to understand your program’s memory. Available at:

https://medium.com/free-code-camp/understand-your-programs-memory-92431fa8c6b (Accessed on

03/05/2020)

Exploit DB (2011). HackSysTeam: Egg Hunter. Available at:

https://www.exploit-db.com/docs/english/18482-egg-hunter---a-twist-in-buffer-overflow.pdf (Accessed on
04/05/2020)

GitHub (2019). Egghunter shellcode. Available at:

https://anubissec.github.io/Egghunter-Shellcode/# (Accessed on 04/05/2020)

Synopsys (2017). How to detect, prevent and mitigate buffer overflow attacks. Available at:

https://www.synopsys.com/blogs/software-security/detect-prevent-and-mitigate-buffer-overflow-attacks/

(Accessed on 04/05/2020)

Research Gate (2012) Hossein Jadidoleslamy. Weaknesses, Vulnerabilities and Elusion Strategies against
Intrusion Detection Systems. Available at:

https://www.researchgate.net/publication/269672807_Weaknesses_Vulnerabilities_And_Elusion_Strategi
es_Against_Intrusion_Detection_Systems (Accessed on 12/05/2020)

https://www.veracode.com/security/buffer-overflow
http://coolplayer.sourceforge.net/
https://www.exploit-db.com/exploits/43773
http://web.mit.edu/rhel-doc/3/pdf/rhel-as-en.pdf
http://web.mit.edu/rhel-doc/3/rhel-as-en-3/bss.html
https://gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html
https://www.geeksforgeeks.org/memory-layout-of-c-program/
https://medium.com/free-code-camp/understand-your-programs-memory-92431fa8c6b
https://www.exploit-db.com/docs/english/18482-egg-hunter---a-twist-in-buffer-overflow.pdf
https://anubissec.github.io/Egghunter-Shellcode/
https://www.synopsys.com/blogs/software-security/detect-prevent-and-mitigate-buffer-overflow-attacks/
https://www.researchgate.net/publication/269672807_Weaknesses_Vulnerabilities_And_Elusion_Strategies_Against_Intrusion_Detection_Systems
https://www.researchgate.net/publication/269672807_Weaknesses_Vulnerabilities_And_Elusion_Strategies_Against_Intrusion_Detection_Systems

Page 23 of 23

Tool References:

OllyDbg (2014). OllyDbg. Available at:

http://www.ollydbg.de/ (Accessed on 02/05/2020)

Mona.py (2020). Mona.py. Available at:

https://github.com/corelan/mona (Accessed on 04/05/2020)

Immunity Debugger (2020). Immunity Debugger. Available at:

https://www.immunityinc.com/products/debugger/ (Accessed on 04/05/2020)

GitHub (2014). findjmp. Available at:

https://github.com/nickvido/littleoldearthquake/tree/master/corelan/findjmp/findjmp/bin

(Accessed on 04/05/2020)

GitHub (2020). pattern_create. Available at:

https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_create.rb

(Accessed on 04/05/2020)

GitHub (2020). pattern_offset. Available at:

https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_offset.rb

(Accessed on 04/05/2020)

GitHub (2016). MSFGUI. Available at:

https://github.com/scriptjunkie/msfgui (Accessed on 04/05/2020)

Notepad++ (2020). Notepad++. Available at:

https://notepad-plus-plus.org/downloads/ (Accessed on 04/05/2020)

http://www.ollydbg.de/
https://github.com/corelan/mona
https://www.immunityinc.com/products/debugger/
https://github.com/nickvido/littleoldearthquake/tree/master/corelan/findjmp/findjmp/bin
https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_create.rb
https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_offset.rb
https://github.com/scriptjunkie/msfgui
https://notepad-plus-plus.org/downloads/

